Version b16
See enhancements for info about what's diffrent
between this and regular bytebeat players like StephanShi's.
Example: the br() function bit reverses the input. Github
Note: this version is a legacy version; the new player will be here.
Super-Important
br() bit reverses it's input (8BIT).
bre() bit reverses it's input. (32BIT)
Important
Subreddit: r/Enhanced_Bytebeat. Check it out!
The blue reprsents the output divided by 256.
The red reprsents the output divided by 65536.
sinf, cosf, tanf, and more are like sin, cos, etc. but maintaining the fact it loops every 256 "steps", instead of every pi steps.
General
Library version: 1
UPDATE LOG
Betas 1-4 -[1 - 6]: "Basic" additions, Library, SR, Button control tests, BitBeat.
V1.0 ----- [7]: --- Grid Mode was adedd. everything is mostly complete! As a result, we left beta after 6 builds.. we're moving quick!
V1.1, v1.2 [8 - 9]: fixed grid mode bug and some other smaller bugs, and RGB_ v1.
v2.0 ----- [10]: -- RGB_ vTWO was made, 2048 and logmode were added in memorial of kolBOSa's deleted player,
---------- [10] --- plus more expansion.
v2.1 ----- [11]: -- Made links store the beat type.
v2.2 ----- [12]: -- Revamped the visualizer.
------ [b13] ------ v2.3 is b13, and the player version is now based off the build. Enhanced the visualizer.
------ [b14] ------ The visualizer enhancement broke SR, and since it isn't used, it has been removed.
------ [b15] ------ Added RAW mode, and added QOL sqrt() and cbrt().
------ [b16] ------ removed record button. OK
Bytebeat music (or one-liner music) is discovered in september 2011. It's a piece of rhythmic and somewhat melodic music with no score, no instruments, and no real oscillators. It's simply a single-line formula that defines a waveform as a function of time, processed 8000 times per second, resulting in an audible waveform with a 256-step resolution from silence (0) to full amplitude (256). If you put that formula into a program with a loop that increments time variable (t), you can generate the headerless unsigned 8 bit mono 8kHz audio stream on output, like in this application. Or for example, you can generate PWM signal on the pin of your microcontroller and send it to the speaker.
History of bytebeat
Original blog posts and videos from Viznut:
Blog posts #1
Blog posts #2
YouTube video #1
YouTube video #2
YouTube video #3
YouTube video #4
On-line JavaScript players:
Player by Paul Hayes
Unfourtanately, the Wurst player is down.
Here on this page you can play with the collection of one-liner bytebeat music formulas that I found on the internet (1,
2,
3,
4) and which I discovered through experimentation, trial-and-error testing and piece-by-piece constructing.
t>>6^t&37|t+(t^t>>11)-t*((t%24?2:6)&t>>11)^t<<1&(t&598?t>>4:t>>10)
★
((-t&4095)*(255&t*(t&t>>13))>>12)+(127&t*(234&t>>8&t>>3)>>(3&t>>14))
(-t>>2)*((127&t*(7&t>>10))<(245&t*(2+(5&t>>14))))
★
10*(t>>6|t|t>>(t>>16))+(7&t>>11)
★ by Viznut10*(t>>6|t|t>>7)+4*(t&t>>13|t>>6)
★ by Viznut, Xpansive, Varjohukka10*(t>>7|3*t|t>>(t>>15))+(t>>8&5)
- Frere Jacques (by Lord Graga)
(128&t*(4|7&t>>13)>>(1&-t>>11))+(127&t*(t>>11&t>>13)*(3&-t>>9))
★
t&4096?(t*(t^t%255)|t>>4)>>1:t>>3|(t&8192?t<<2:t)
★
(t&8192?t&4096?t&1024?2*t:4*t:t&512?4*t:4.2*t:(t&4096?t&1024?2*t:10*t:t&512?2*t:8*t)>>2)*(t&16384?3:2)|t*(t&16384?.125:1/(.01*t))
(t&8192?t&4096?t&1024?2*t:4*t:t&512?4*t:4.2*t:(t&4096?t&1024?2*t:10*t:t&512?2*t:8*t)>>2)*(t&16384?3:2)
- simplified
(t&4096?(t*(t^t%255)|t>>4)>>1:t>>3|(t&8192?t<<2:t))^((t&8192?t&4096?t&1024?2*t:4*t:t&512?4*t:4.2*t:(t&4096?t&1024?2*t:10*t:t&512?2*t:8*t)>>2)*(t&16384?3:2)|t*(t&16384?.125:1/(.01*t))>>1)
★
10*(t&5*t|t>>6|(t&32768?-6*t/7:(t&65536?-9*t&100:-9*(t&100))/11))
★ ★
t>>t%(t%2?t&32768?41:t&16384?51:61:34)&t>>4
★
t*(3+(1^5&t>>10))*(5+(3&t>>14))>>(3&t>>8)
★
5*t&t>>7|3*t&4*t>>10
★ by Miiro(9*t&t>>4|5*t&t>>7|3*t&t>>10)
★ by Stephth(9*t&t>>4|5*t&t>>7|3*t&t>>10)-1
- with drums9*t&t>>4|5*t&t>>7|(3*t&t>>10)-1
- by Radavis
t*(0xCA98CA98>>(t>>9&30)&15)|t>>8
t*(0xCA98>>(t>>9&14)&15)|t>>8
★
t<<1^(t<<1)+(t>>7)&t>>12|t>>4-(1^7&t>>19)|t>>7
64*(t>>3|t>>4|t>>9)+(t>>11&t<<2)^2*(t>>16|t|t>>7)+32*(t>>t&32)
(t>>6|t<<1)+(t>>5|t<<3|t>>3)|t>>2|t<<1
t+(t&t^t>>6)-t*(t>>9&(t%16?2:6)&t>>9)
2*(t>>5&t)-(t>>5)+t*(t>>14&14)
★
t|t%255|t%257
t>>6&1?t>>5:-t>>4
t*(0x13371337>>(t>>13&27)&127)|t>>4|t<<5
★
430*(5*t>>11|5*t>>1)
★
t/8>>(t>>9)*t/((t>>14&3)+4)
t*(42&t>>10)
(t*(t>>12)*64+(t>>1)*(t>>10)*(t>>11)*48)>>(((t>>16)|(t>>17))&1)
t*((t>>9|t>>13)&15)&129
t*(t>>9|t>>13)&16
- Clean melody9*(t*((t>>9|t>>13)&15)&16)
- Louder clean melody
(t&t>>12)*(t>>4|t>>8)
★(t-(t>>4&t>>8)&t>>12)-1
- by [deleted]
(t>>9^(t>>9)-1^1)%13*t
t>>4+!(-t>>13&7)+2*!(t>>17)|t*t*(t>>(t>>12^t>>11)%3+10)/(7+(t>>10&t>>14&3))*!(t&512)<<3+(t>>14&1)
★ World of ROMt>>4|t*t*(t>>6&8^8)*(t>>11^t/3>>12)/(7+(t>>10&t>>14&3))
★ a bare-bones versiont*(t>>(t>>11&15))*(t>>9&1)<<2
t>>5|t<<4|t&1023^1981|t-67>>4
100*((t<<2|t>>5|t^63)&(t<<10|t>>11))
t%25-(t>>2|15*t|t%227)-t>>3|(t>>5&1663*(t<<5)|(t>>3)%1544)/(t%17|t%2048)
t%25+(t>>2|15*t)+t>>3
- simplified version
2*(1-(t+10>>(t>>9&t>>14)&t>>4&-2))*((t>>10^t+(t>>6&127)>>10)&1)*32
Signed(t&64|t>>5)^(t&33|t>>8)^(t&14|t>>9|t&76)^(t|187)^t*(t>>8&838+t>>13)&644
★
t*t/(t>>12&t>>8)<<7
★
t%(t/(t>>9|t>>13))
- by Xpansivet*(t>>8|t>>9)&46&t>>8^(t&t>>13|t>>6)
- Lost in Space
t*(t>>(t&4096?t*t>>12:t>>12))|t<<(t>>8)|t>>4
t>>5|(t<<3)+12*t*(t>>13|(t>>1|t>>10|t>>2)&t>>8)
t/3>>t%40+5|t/(24+t&3)>>t%(15-(t>>15)%8*6)+5
t/3>>1|t/2>>2&t/5>>7|t&31*t*(t>>8)
t*(4+(t>>9)%3)&t/3>>7&224
t>>5|(t>>2)*(t>>5)
0xCCDD*((t>>6)*t>>430)%0x1E3
★
3*((t>>1)+20)*t>>14*t>>18
t%50.01+t%40.1+t%30.1+t%60.01
- "Harmony". Based off of mu6k's "Long Line Theory"(((t&t*5)|t>>4)+(t|t>>4*t<<8-1))^t>>12
★ Wipt/(t%(t>>8|t>>16))
★ Extremely loud grinding machinet*t/(1+(t>>9&t>>8))&128
★ Everything is brokent*((t/401)^(t/400))
- It wont stopt*-(t>>8|t|t>>9|t>>13)^t
- Ststututterter(t/91&t^t/90&t)-1
- Waivert*t/(t>>13^t>>8)
- Glissando((t/4)>>t/4)|(t>>2)
- Plucker v2
t*(1+(t>>10)*(43+2*(t>>15-(t>>16)%13)%8)%8)*(1+(t>>14)%4)
11*(t*(1|(t>>10-(t>>17)%4)%8)&(8<<(t>>13)%4)*(1|(t>>15)%8))*(t>>10)
(t>>(t>>12)%4)+t*(1+(1+(t>>16)%6)*(t>>10)*(t>>11)%8)^t>>13^t>>6
(t*(t>>13|t>>8)|t>>16^t)-64
(~t>>2)*(2+(42&2*t*(7&t>>10))<(24&t*((3&t>>14)+2)))
(1+(t>>10)%7)*(t*(1+(t>>13)%4)%(24+9*(t>>14)%8)&16)*10
t*(3+(t>>10)%(4+(t>>11)%8))|t>>5
t^t>>4^(t*((t>>(11+(t>>16)%3))%16))^t*3
t<<3+(t>>10)%3^t>>4+(t>>12)%4^t**(2+(t>>13)%8)
t*(t^t+(t>>15|1)^(t-1280^t)>>10)
t*((t-2296&t)>>11)
(t<<5)^-(t>>3&1)
- The general form is (t<<N)^-(t<<(N-8)&1)(t<<4)^-(t>>4&1)
(t<<3)^-(t>>5&1)
(t&15)*(0-t&15)*(((t&16)>>3)-1)*128/65
Signed
d=t>>12&1,h=(t>>9)+4,t*t*(t&255)*d/156+(t*(t^15)+t)*((h|t/2048+1&127)-h)/64&127-d*(2*(t>>5&127)/3+32)
a=t-256,((44*(t/256-28|3)|t*8&t>>11&t>>5|t*(a>>3&a>>4&a>>5&64)>>t/16)/2&127)+(((t^t+t/256)&255)/(5-(t>>17&3))/2&127)
j=(t-41024&t+1024)>>11&255,k=t&16383,(t*(j&255)/2&127)+(1E5/(t&4095)/4&63)+(int(k/(k>>7)-136)/8&32*(1+(7<j))-1)
d=t*465/(43+6*(t>>15&3^1)),((d/4&t>>6)+d/2&127)+(d/6&127)
★
v="4568"[t>>11&3],w=(t>>5|t>>v^sin(t/8/(v/(((t>>12&t>>14)&8)+((t>>14|t>>11)&1))))*29-100),w+(v*((t*v/7*4&t>>11)|w))
r=11e3,s=int(t/r+1)%32,b='ćóóóćÎÎÎÎÃÃÃÃÃÃΰ°°°¦¦¦¦'.charCodeAt(s)/300*t%512,160/3*(sin(t%r/(t%r/100+8))+1)*(s%2+.6*!(s%16))+b%(400+128*sin(b/(21+sin(t/r))))%256/3+(.999*(0xDBC97749&2**s?2*b:b)%128>64+15*sin(t/1e4)?64-t/r%1*32:0)
44kHzi=int,c='charCodeAt',b=t/441e3*16,q=b%.5,h=x=>t/2210*2**((x-36)/12)%1,w=(x,y=0)=>(h(x)-sin(y*2+b*PI)/8>.5)*30,s=i(b*2)%32,a=abs(8-i(b*8)%16),t||(v=.5),v=3.65*v*(1-v),sin(q/(q/100+3e-4))*40*!(54878&1<<s%16)+(v-.5)*70*max(0,1-(b+1)%2*.77)+w(s==6&&i(b*6%6)==1?85:s==14&&q<.25?78:'SSSSSSSQOOONNOLJLLLLLNLJIIIGGGGG'[c](s),s==5)+w('@@@@@@BCEEECCBCCEEEEECEEBBB@@@@@'[c](s))+h('pnkgrnkipmigpnkg'[c](a%4+i(s/8)*4)+12*-i(a/4))*27+99
44kHz
128/(y=t&4095)*25+(x=t*(15&0x9866>>(t>>12&12))/6&127)*y/1E4+((t>>6^t>>8|t>>12|x)&63)
★
w=[1,2,3,4,3,4,1][(t>>13)%7]*t,(w%50.01+w%40.1+w%30.1+w%60.01)
★ "Harmony v2". Based off of mu6k's "Long Line Theory"a=[1,1,2,3,1,1,2,3,1,1,2,4,4,4,5,5,5][(t>>12)%17],b=[5,4,3,2][(t>>16)%4],(t*b/a)%50.1+(t*b/a)%50
- Array songMath.sin(Math.sin(t/100)-t/((2+(t>>10&t>>12)%9)))
- Trill Floatbeat
u=10^(t>>15&7),u+=3,y=(t>>11&7)/u,f=t*8*y,z=(t*16/u)&0x63|f|f*1.01,z*2
★
t*(1+"4451"[t>>13&3]/10)&t>>9+(.003*t&3)
n=[1,0,1,0,2,2,1,0,1,0,2,2,1,0,2,2],freq=n[Math.floor(t/500)%16]*2,mod=t/15e3,Math.sin(t*freq/40.7+Math.sin(t*freq/40.7)*mod)
Floatbeat
(t<<3)*[8/9,1,1.125,1.2,4/3,1.5,0][[0xd2d2c8,0xce4088,0xca32c8,0x8e4009][t>>14&3]>>3*(0x3dbe4688>>3*(9<(t>>10&15)?18:t>>10&15)&7)&7]
★
SS=function(s,o,r,p){var c=s.charCodeAt((t>>r)%p);return c==95?0:31&t*Math.pow(2,c/12-o)},3*SS("0_0_____7_7_____037:<<",6,10,32)+5*(t&4096?SS("037",4,8,3)*(4096-(t&4095))>>12:0)
((
// abcdeghi is what bar you're currently on in the stepper, which is s.
// s rises very slowly relative to t. we set it to step 0-7 inclusive
// and for each step in the bars (0-7) we assign a letter variable to it
// to save space. This is the bass note layout for each bar.
(a = (s = Math.floor(t / 9600 % 8)) == 0) * (y = t * 2) * 1.5873 +
(b = (s == 1)) * y * (v = 1.4983) +
(c = (s == 2)) * y * v +
(d = (s == 3)) * y +
(e = (s == 4)) * y * 1.5873 +
(g = (s == 5)) * y * v +
(h = (s == 6)) * y +
(i = (s == 7)) * y
) % (m = 256) +
(
// u is an octave frequency, 4x the frequency of y (bass line) which is 2x the frequency of t (raw counter % 256)
// the constant multipliers above and below are derived from the formula
// as described on http://www.phy.mtu.edu/~suits/NoteFreqCalcs.html
// to solve for a note offset, plug a constant into the formula f/(12th root of 2)
// notice how we're using multiple bar identifier for the same notes.
// this is another code shrinker.
// also, v is = to 1.4983. I just used it so much
// in the song I replaced it with a variable.
(a | e) * (u = y * 4) * v +
u * (
(b | c | g | h) * 1.3348 +
d * 0.8908 +
i * 1.2599
)
// the above is equivalent to
// u*(
// (s == 0) * 1.4983 +
// (s == 1) * 1.3348 +
// (s == 2) * 1.3348 +
// (s == 3) * 0.8908 +
// (s == 4) * 1.4983 +
// (s == 5) * 1.3348 +
// (s == 6) * 1.3348 +
// (s == 7) * 1.2599
// )
) % m + (
u * (
i + (a | e) * 1.1892 +
(b | c | g | h) * 1.1224 +
d * v
)
) % m + (
u * (
(a | e) +
(b | g | h) * 0.8908 +
c * 0.9438 +
d * 1.1892 +
i * 0.7491
)
) % m + (
u * (
(a | e) * 0.7937 +
(b | c | g | h) * 0.7491 +
d / 2 + i * 0.627
)
) % m) / 8 * (
// now this is where the gating/chord groove happens
// during the duration of the 8 bars above, there's
// 96 steps. w represents each step as it occurs.
// as the number '1' is bitshifted through each set
// of hex numbers, if it lines up with another 1, it
// will activate the above chord to be played by
// evaluating to 1, otherwise, it will be zero and
// mute the above chords.
// I'm not doing any sort of fancy tempo changes for the groove
// er, i guess the best way to show how the groove works is with a
// pseudo tracker interface
// C-5 --
// --- --
// D-5 --
// C-5 --
// --- --
// D-5 --
// E-5 --
// --- --
// G-5 --
// manual swing i guess you can call it
(((w = Math.floor(t / 800 % 96)) < 32) * (1 << w & 0xC007307) +
(w >= 32 && w < 64) * (1 << w & 0x73070E70) +
(w > 64) * (1 << w & 0xE70C400)) != 0
) +
// noise generators
(t * Math.sin(t * Math.cos(t)) % 18 + 25) * ((1 << (t / 200 % 24) & 1052928) != 0) +
(t * Math.sin(t * Math.cos(t)) % 38 + 75) * ((1 << (t / 400 % 24) & 12288) != 0) +
(Math.tan(Math.sin(t * Math.cos(t))) * 32 + 74) * (t % Math.sin(t / 33) < Math.cos(0.032 * t)) * ((1 << (t / 400 % 24) & 1) != 0) +
// same concept as above, except they're running on much smaller loops.
// melody!
// manually changes the frequency based on what
// tick we're on (0-95)
// zero is considered to be off... but sometimes we need the root note,
// so we just use a number really close to zero! !! ! ! HAX
(Math.pow(1.059463, z = (
(w == 83 |
w == 77 |
w == 63 |
w == 35 |
w == 17 |
w == 51 |
w == 47 |
w == 9 |
w == 0 |
w == 30) * -5 +
(w == 3) * 0.1 +
(w == 41 | w == 6 | w == 74) * -2 +
(w == 72 |
w == 66 |
w == 80 |
w == 59 |
w == 62 |
w == 29 |
w == 18 |
w == 54 |
w == 15 |
w == 12) * -7 +
(w == 69 | w == 56 | w == 26 | w == 20 | w == 14) * -9 +
(w == 21) * -12 +
(w == 50 | w == 44 | w == 33) * -4 +
(w == 93) * -6
)) * u * 2) % m / 4 * (z != 0)
(((a=(s=Math.floor(t/9600%8))==0)*(y=t*2)*1.5873+(b=(s==1))*y*(v=1.4983)+(c=(s==2))*y*v+(d=(s==3))*y+(e=(s==4))*y*1.5873+(g=(s==5))*y*v+(h=(s==6))*y+(i=(s==7))*y)%(m=256)+((a|e)*(u=y*4)*v+u*((b|c|g|h)*1.3348+d*0.8908+i*1.2599))%m+(u*(i+(a|e)*1.1892+(b|c|g|h)*1.1224+d*v))%m+(u*((a|e)+(b|g|h)*0.8908+c*0.9438+d*1.1892+i*0.7491))%m+(u*((a|e)*0.7937+(b|c|g|h)*0.7491+d/2+i*0.627))%m)/8*((((w=Math.floor(t/800%96))<32)*(1<<w&0xC007307)+(w>=32&&w<64)*(1<<w&0x73070E70)+(w>64)*(1<<w&0xE70C400))!=0)+(t*Math.sin(t*Math.cos(t))%18+25)*((1<<(t/200%24)&1052928)!=0)+(t*Math.sin(t*Math.cos(t))%38+75)*((1<<(t/400%24)&12288)!=0)+(Math.tan(Math.sin(t*Math.cos(t)))*32+74)*(t%Math.sin(t/33)<Math.cos(0.032*t))*((1<<(t/400%24)&1)!=0)+(Math.pow(1.059463,z=((w==83|w==77|w==63|w==35|w==17|w==51|w==47|w==9|w==0|w==30)*-5+(w==3)*0.1+(w==41|w==6|w==74)*-2+(w==72|w==66|w==80|w==59|w==62|w==29|w==18|w==54|w==15|w==12)*-7+(w==69|w==56|w==26|w==20|w==14)*-9+(w==21)*-12+(w==50|w==44|w==33)*-4+(w==93)*-6))*u*2)%m/4*(z!=0)
★
intro = ((sb = t > 0xffff) & 0),
background =
(((y = Math.pow(2, [15, 15, 23, 8][t >> 14 & 3] / 12)) & 0) + (
((y * t * 0.241) & 127 - 64) +
((y * t * 0.25) & 127 - 64)
) * 1.2),
drum = (
((a = 1 - (t & 0x7ff) / 0x7ff) & 0) +
(((5 * t & 0x7ff) * a) & 255 - 127) *
((0x53232323 >> (t >> 11 & 31)) & 1) * a * 1.0 +
(((d = (14 * t * t ^ t) & 0x7ff) * a) & 255 - 128) *
((0xa444c444 >> (t >> 11 & 31)) & 1) * a * 1.5 +
((a * a * d * (t >> 9 & 1) & 0xff - 0x80) * 0.1337)
) * sb,
instrument =
+((g = (t & 0x7ff) / 0x7ff) & 0) +
((g = 1 - (g * g)) & 0) +
((h = Math.pow(2, ([
[15, 18, 17, 17, 17, 17, 999, 999, 22, 22, 999, 18, 999, 15, 20, 22],
[20, 18, 17, 17, 10, 10, 999, 999, 20, 22, 20, 18, 17, 18, 17, 10]
][((t >> 14 & 3) > 2) & 1][t >> 10 & 15]) / 12)) & 0) +
((h * t & 31) + (h * t * 1.992 & 31) + (h * t * .497 & 31) + (h * t * 0.977 & 31) - 64) *
g * 2.0 * sb,
intro + Math.max(Math.min(instrument + background + drum, 127), -128)
((sb=t>0xffff)&0)+Math.max(Math.min(((y=Math.pow(2,[15,15,23,8][t>>14&3]/12))&0)+(((y*t*0.241)&127-64)+((y*t*0.25)&127-64))*1.2+(((a=1-(t&0x7ff)/0x7ff)&0)+(((5*t&0x7ff)*a)&255-127)*((0x53232323>>(t>>11&31))&1)*a*1.0+(((d=(14*t*t^t)&0x7ff)*a)&255-128)*((0xa444c444>>(t>>11&31))&1)*a*1.5+((a*a*d*(t>>9&1)&0xff-0x80)*0.1337))*sb+((g=(t&0x7ff)/0x7ff)&0)+((g=1-(g*g))&0)+((h=Math.pow(2,([[15,18,17,17,17,17,999,999,22,22,999,18,999,15,20,22],[20,18,17,17,10,10,999,999,20,22,20,18,17,18,17,10]][((t>>14&3)>2)&1][t>>10&15])/12))&0)+(((h*t&31)+(h*t*1.992&31)+(h*t*.497&31)+(h*t*0.977&31)-64))*g*2.0*sb,127),-128)
★ by Mu6kw=t>>9,k=32,m=2048,a=1-t/m%1,d=(14*t*t^t)%m*a,y=[3,3,4.7,2][p=w/k&3]*t/4,h="IQNNNN!!]]!Q!IW]WQNN??!!W]WQNNN?".charCodeAt(w/2&15|p/3<<4)/33*t-t,s=y*.98%80+y%80+(w>>7&&a*((5*t%m*a&128)*(0x53232323>>w/4&1)+(d&127)*(0xa444c444>>w/4&1)*1.5+(d*w&1)+(h%k+h*1.99%k+h*.49%k+h*.97%k-64)*(4-a-a))),s*s>>14?127:s
★ 300b Information Theory (by Ryg, Las, Decipher, P01)
40.7436654*t*Math.pow(2,"B*918/916-918/91B*918/916-918/91>*;2:1;26/;2:1;2>*;2:1;26/;2:1;2A*;291;28/;291;2A*;291;28/;291;2B*=-;,=-91=-;,=-B*=-;,=-91=-;,=-E*>6=4>692>6=4>6E*>6=4>692>6=4>6D*<3:1<380<3:1<3D*<3:1<380<3:1<3D(=4<3=481=4<3=4D(=4<3=481=4<3=4B(:18/:16.:18/:1B(:18/:16.:18/:1B&;2:1;26/;2:1;2B&;2:1;26/;2:1;2@&;,9*;,8/;,9*;,@&;,9*;,8/;,9*;,@%=-;,=-91=-;,=-@%=-;,=-91=-;,=->*=-;,=-92=-;,=->*=-;,=-92=-;,=->,8/6-8/428/6-8/>,8/6-8/428/6-8/=-412/4192412141=-412/4192412141;-6341613/634163;-6341613/634163;,8/6-8/528/6-8/;,8/6-8/528/6".charCodeAt(t>>9)/12-7)
★
t*Math.pow(2,("kotojokohogohotojokohogokokhpmjmjfokhomkjhggcckotojokohogohotojokohogokokhpmjmjfrmorokfjkkkkkkrpomkjkmokmpoprrjjkkoommoottqqhjkkjjhfecebccccccfffhihfdfcdahhhjkjhghegcmjcjmjpjojmjkhchkhohmhkhjhkhmhohphmhoomkjkhhhhhh".charCodeAt((t>>10)&255)-58)/12)*63>>6&132
v=t/2^(t&64?63:0),v=v>>v,v/(1+(v>>7))&t/32|(t>>11)%8%3*t*t&15
- No 4u=3*t>>t/4096%4&-t%(t>>16|16)*t>>14&8191,u/(u>>6|1)*4
- No 5 Signed
t>>10<<(t>>4)%([8,9,10,11][(t>>11)%4]-(t>>15)%4)
.35*t*("#\x0B;\x0B&\x0BA\x0B)\x0BG\x0B+\x0BK\x0B/\x0BS\x0B3\x0B[\x0B8\x0Be\x0B;\x0Bk\x0B".charCodeAt(t/1E3%32)-11)
.17*t*("33AAAAA\x0BAAKKKGGG;;A\x0BAK[KSSSSSSSS\x0B\x0B[\x0B[SSSKKGGG;;;GGA\x0BAK[KAAAAAAAA".charCodeAt(t/1800%64)-11)
★
(((t<<(4-(t*3>>13&1)))/("@Lf@DUfD".charCodeAt(t*3>>14&7))|(t*3>>9))&31)+
(((t<<(4-(t*3>>13&1)))/("3@L39DU93@L39D+9".charCodeAt(t*3>>14&15))|(t*3>>9))*(254>>(t*3>>20&7)&1)&31)+
(((t<<2)/("LL`rLL`U".charCodeAt(t*3>>18&7))|6)*(254>>(t*3>>21&7)&1)&31)+
(((t<<2)/("MMasMMaV".charCodeAt(t*3>>18&7))|6)*(254>>(t*3>>21&7)&1)&31)+
(((t<<4)/("3@Lf".charCodeAt(t>>11&3))|(-t*3>>12&7))*(22235>>(t*3>>14&15)&1)*(126>>(t*3>>21&7)&1)&15)+
((((t*t/21+t&(t>>3))|t*3>>9|t*3>>10)-((t*3>>16&1)*9))*(6>>(t*3>>22&3)&1)&63)+
(((t<<5)/("LLLD@DUfLLL3DD+933L3&+39@@f@DDUf".charCodeAt(t*3>>16&31))^(t*3>>11)|(t*3>>14&15))*(104>>(t*3>>21&7)&1)&31)+
(((t<<3)/("393+&+3@030&+33+&@3+ \"&+03@3+33@".charCodeAt(t*3>>16&31))^(-t*3>>11)|(-t*3>>14&15))*(104>>(t*3>>21&7)&1)&15)
44kHz ★
s=(a,b,c)=>c/a.charCodeAt(b),d=a=>a&1?-1:1,e=(a,b)=>t>>22&1?b:a,b=a=>(s(a,r(t)+p*16,t<<2)*(254>>(t>>20&7)&1))&20,
p=178>>(t>>19&7)&1,q=a=>120>>(a>>20&7)&1?1:(-a>>16&1),r=a=>112>>(a>>20&7)&1?t>>14&15:(t>>17&1)*8,
l=" QQffQQLLLfLLDDQQQfff rrff``UU QQDDQQLLLfLLDD<<f333 r\x98rf`r`U <<<9<LUUU\x80U\x80UL[[rLLL rrff`frr <<<93U999`9U3+--9&&& rrff``UU",
b("rrLr99rrUUrU99rULLyL<<yy``\x80`@@\x80`")*2+b("qqKq88qqTTqT88qTKKxK;;xx__\x7f_??\x7f_")+
(s("rf[<r`L@\x98\x88yQ\x80fUL",(t&3)+(t>>17&1)*4+p*8,t<<2)&7)*(t*d(t>>16)>>12&15^e(0,5))*3/4+
((s("rf[L<9-\x1e&-3&-3-3\xab\x98\x90r`UH0+&9+&\x1d&+\x98\x88yfQL<(3<D3<3-(&09HL`ULU`r`UL@9",(t>>13&31)+p*32,t<<5-(t>>11&3))|t>>8)*q(t)&31)+
(((s(l,t>>14&127,t<<6)&s(l,t>>14&127,(t*e(89/88,499/498))<<6))*(63486>>(t>>15&15)&1)*(102>>(t>>20&7)&1))&e(42,32))+
((((253507989>>(t>>6&31))*(1>>(t>>11&3))*(19593>>(t>>13&15)&1)&1)*50)+
((((t*t/21+t&(t>>3))|t>>7|t>>8)-7)*(3>>(t>>11&3)&1)*(2450526224>>(t>>13&31)&1)&31)*5/2)*(112>>(t>>20&7)&1)
44kHz ★
128 + a();
function a() {
k = 22050;
tk = ((t * 11.5 / k) & 0xFFFF) % 96;
return c(tk) + c(tk - 4) / 10 + (6 - tk % 6) * ((tk % 6 > 2 && tk % 6 < 4) ? (Math.random() * 128) : 0) / 24
}
function c(tk) {
o1 = d(b("000fffjj0ffhhh0jjjhh0ffff00aa0aa0ccddddff0cc0aa0000mm0mm0kkjjj0hh0ff0hh0000mm0mm0kk0jjjj00hhh000", tk));
o2 = d(b("NNN000000NNNIII000000IIIKKK000000KKKLLL000000LLLGGG000000GGGHHH000000HHHIII000000IIIAAA000000III", tk));
o3 = d(b("000R00000R00000P00000P00000N00000N00000R00000R00000N00000N00000R00000R00000P00000P00000M00000M00", tk) + 12);
return o1 + o2 + o3
}
function d(n) {
ff = Math.pow(2, n / 12) * 16.4;
q = k / ff;
return (n == 8 || n == 20) ? 0 : (t % q >= q / 2) ? 16 : -16
}
function b(s, p) {
return s.charCodeAt(p) - 40
}
22kHz128+a();function a(){k=22050;tk=((t*11.5/k)&0xFFFF)%96;return c(tk)+c(tk-4)/10+(6-tk%6)*((tk%6>2&&tk%6<4)?(Math.random()*128):0)/24}function c(tk){o1=d(b("000fffjj0ffhhh0jjjhh0ffff00aa0aa0ccddddff0cc0aa0000mm0mm0kkjjj0hh0ff0hh0000mm0mm0kk0jjjj00hhh000",tk));o2=d(b("NNN000000NNNIII000000IIIKKK000000KKKLLL000000LLLGGG000000GGGHHH000000HHHIII000000IIIAAA000000III",tk));o3=d(b("000R00000R00000P00000P00000N00000N00000R00000R00000N00000N00000R00000R00000P00000P00000M00000M00",tk)+12);return o1+o2+o3}function d(n){ff=Math.pow(2,n/12)*16.4;q=k/ff;return (n==8||n==20)?0:(t%q>=q/2)?16:-16}function b(s,p){return s.charCodeAt(p)-40}
22kHz ★
S = 1.059463094,
P = Math.pow,
X = [
function(t) {
return t < 1e3 && (Math.sin(t * t) * 1e8 % 2 | 0 ? 1 : 3)
},
function(k, n, t) {
return l = 4410 / 44 / P(S, n), t % l > (l / 2 - t * l * k) ? 1 : 3
},
function(f, a, s, n, t) {
return m = t % 5292 / 882 | 0, k = m % 3, z = (a & (0xf00 >> (4 * k))) >> (8 - 4 * k), (!s || m % 2) && f(n + z, t)
}
],
Y = [
function(t) {
return t < 1e3 && (k = 299 / (t + 1), k - (k | 0) > .5 ? 1 : 3)
},
0,
X[0],
X[2].bind(this, X[1].bind(this, 7e-5)),
function(t, f) {
return t < 2400 && (p = P(t + 1, .8), t < 200 || t > 900 ? X[0](p) : (p / 27 | 0) % 2 ? 1 : 3)
}
],
Z = [
function() {
return 0
},
function(s, n, t) {
return l = 4410 / 44 / P(S, n), k = (t % (l * 8) / l) | 0, (!s || t / 882 % 3 | 0) && (((k == 1) ^ !!(k & 2)) ? 1 : 3)
},
Y[3].bind(this, 89),
Y[3].bind(this, 71)
],
A = t % 6800,
B = t / 6800 | 0,
C = B % 320,
M = parseInt('68a68f00dba0ab0068a68f0hf0fdbdb080868bb0000068b080868d0bdbdf0d0068a68f00dba0ab0068a68f0hf0fdbdb080868bb0000068b080868d0bdbdfdfg0d0dbdg000000bdgdgi0gik0ikigdb86080680400000068b8bd00bdg6600g0dg0d0dbdg000000bdgdgi0gik0ikigdbdg0i0gi0d000000bdg0d0gdbd0gdb8641'[C - 66] || 0, 36),
96 + 16 * (
Y[B & 3 ? 2 : B & 4](A) ||
Z['1120320312032011' [B % 16]](M, '24222222422222420022222222222202' [B % 32] - 2 + 5 * (C > 191) || 0, A) ||
(M ? X[1](0, M - 6, t) : 1)
)
44kHzS=1.059463094,P=Math.pow,X=[function(t){return t<1E3&&(Math.sin(t*t)*1E8%2|0?1:3)},function(k,n,t){return l=4410/44/P(S,n),t%l>l/2-t*l*k?1:3},function(f,a,s,n,t){return m=t%5292/882|0,k=m%3,z=(a&3840>>4*k)>>8-4*k,(!s||m%2)&&f(n+z,t)}],Y=[function(t){return t<1E3&&(k=299/(t+1),k-(k|0)>.5?1:3)},0,X[0],X[2].bind(this,X[1].bind(this,7E-5)),function(t,f){return t<2400&&(p=P(t+1,.8),t<200||t>900?X[0](p):(p/27|0)%2?1:3)}],Z=[function(){return 0},function(s,n,t){return l=4410/44/P(S,n),k=t%(l*8)/l|0,(!s||t/882%3|0)&&(k==1^!!(k&2)?1:3)},Y[3].bind(this,89),Y[3].bind(this,71)],A=t%6800,B=t/6800|0,C=B%320,M=parseInt("68a68f00dba0ab0068a68f0hf0fdbdb080868bb0000068b080868d0bdbdf0d0068a68f00dba0ab0068a68f0hf0fdbdb080868bb0000068b080868d0bdbdfdfg0d0dbdg000000bdgdgi0gik0ikigdb86080680400000068b8bd00bdg6600g0dg0d0dbdg000000bdgdgi0gik0ikigdbdg0i0gi0d000000bdg0d0gdbd0gdb8641"[C-66]||0,36),96+16*(Y[B&3?2:B&4](A)||Z["1120320312032011"[B%16]](M,"24222222422222420022222222222202"[B%32]-2+5*(C>191)||0,A)||(M?X[1](0,M-6,t):1));
44kHz ★
Z=Math.floor,P=Math.pow,T=Math.sin,I=parseInt,S=[0,2,4,7,9,5,6,19,12,1],B=[0,4,5,4,0,-4,-5,-7],n=function(c,e){return 127*P(T(c*P(1.05946,e)/15.9517),3)},r=function(c){return I(T(c).toString(16).substring(7,9)||0,16)-128},X=function(c){return I(T(c+.1).toFixed(6)[5])},a=function(c,e){return c*e},d=5E3,b=Z(t/d),p=1-t%d/d,W=2*d,Y=Z(b/2),L=Math.max(t-3*d,0),C=Z(L/W),F=1-L%W/W,N=B[Z(Y/16)%8],G=4*d,R=P(1-t%G/G,3),a(r(t),P(p/2,3)+P(2==b%4&&p,.5)/7)+a(n(t,S[X(Y%4+Z(Y/16))]+N),(1-t%W/W)/4)+a(n(L,S[X(C%4+Z(C/16))]+B[Z(C/16)%8]),F/16)+a(0<T(99*R)?19:-19,R)+a(r(Z(t/4)),Z(t/G)%2&&R/4)+a(n(t,N-48),.25)+128
44kHz ★
t=t/8,b=t/1250,f=Math.floor(b%64),g=Math.floor(b/4%16),d=1.12,n=[1,1,1,d,d,d,d,d,.94,.94,.94,1.26,1.26,1.26,1.26,1.26,.84,.84,.84,.94,.94,.94,.94,1.26,1.26,1.26,1.26,1.26,d,d,d,d,.84,.84,.84,d,d,d,d,d,.94,.94,.94,1.26,1.26,1.26,1.26,1.26,1,1,1,d,d,d,d,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5],n1=[1,1.26,1.89,1.68,1.68,1.5,1.5,1.4,.94,d,1.68,1.5,1.5,1.4,1.26,d,1.26,1.4,1.26,1.19,1.19,1.26,1.4,1.5,1.5,1.5,1.5,1.5,0,1.4,1.26,d,1,1.26,1.89,1.68,1.68,2.24,2.24,2.52,2.38,1.89,1.4,1.5,1.5,1.4,1.26,d,1.26,1.4,1.26,d,d,1.26,1.4,1.5,1.5,1.5,1.5,1.5,1.5,1.5,0,0],n2=[1.5,1.4,1.68,1.5,1.26,1.68,1.5,1.4,1.26,1.41,1.68,1.5,1.26,1.4,1.5,1.5],n3=[1.26,d,d,0.94,.94,1.19,.94,.94,.94,d,1.19,.94,.94,d,.94,.94],f1=n[f]*2,f2=n1[f]*16,f3=n2[g]*8,f13=n3[g]*16,t*f1/(256/32)%32+Math.abs(32-t*(f2/(256/32))%32*2)+t*f3/(256/8)%8+t*f13/(256/8)%8
44kHz ★
z=40.7,b=t/2250,r=Math.floor(b),y=r%16,
a=[1,2,1,2,1.2,2.4,1.2,2.4,1.33,2.67,1.33,2.67,1.5,3,1.5,3][y],
c=r%64>1&&r%64<33,o=c?1.19:1.5,
n=[0,0,2.38,2.67,2.38,0,2,2.24,0,2.38,0,2.24,0,1.78,0,2,2,2,1,1.19,1.5,0,1.19,1.33,0,1.19,0,c?1.12:1.33,0,o,o,o],
x=Math.floor(r/4)%4,d=[12,12,10.67,12][x],g=[9.52,9.52,8,8.96][x],h=[8,7.12,6.72,7.52][x],v=(b*2%4)*1.25,
w=Math.floor(y/12),u=Math.floor(r/16)%4,
j=[[19.04,17.92],[14.24,9.52],[10.64,12],[8,0]],
Math.sin(t*(1/(z))+Math.sin(t*(1.125)/z)*7*(1-b*2%4>0?1-b*2%4:0))*(40-b*15%30)+40+
(b<16?0:Math.random()*(r%4==2?(32-(b*32%32)):0))+
(b<32?0:Math.random()*(16-(b*28%28<16?b*28%28:16)))+
(b<64?0:Math.sin(t*(a/z)+Math.sin(t*(a)/z)*4*(1-b%1))*32+32)+
(b<96?0:Math.sin(t*d/z+Math.sin(t*d/z)*(0+(b*1.5%3)))*v+5)+
(b<96?0:Math.sin(t*g/z+Math.sin(t*g/z)*(0+(b*1.5%3)))*v+5)+
(b<96?0:Math.sin(t*h/z+Math.sin(t*h/z)*(0+(b*1.5%3)))*v+5)+
(b<128?0:t*n[r%32]*8%256>121+Math.abs(108-(b*56%224))?20:0)+
(b<129?0:t*n[(r-1)%32]*7.98%256>121+Math.abs(108-(b*56%224))?7:0)+
(b<192?0:Math.sin(t*(j[u][w]/z)+Math.sin(t*(j[u][w]*2)/z)*4*(y<2||y>=12&y<14?1-b/2%1:0))*(5.3-y/3%4)+5.3)
11kHzz=40.7,b=t/2250,r=Math.floor(b),y=r%16,a=[1,2,1,2,1.2,2.4,1.2,2.4,1.33,2.67,1.33,2.67,1.5,3,1.5,3][y],c=r%64>1&&r%64<33,o=c?1.19:1.5,n=[0,0,2.38,2.67,2.38,0,2,2.24,0,2.38,0,2.24,0,1.78,0,2,2,2,1,1.19,1.5,0,1.19,1.33,0,1.19,0,c?1.12:1.33,0,o,o,o],x=Math.floor(r/4)%4,d=[12,12,10.67,12][x],g=[9.52,9.52,8,8.96][x],h=[8,7.12,6.72,7.52][x],v=(b*2%4)*1.25,w=Math.floor(y/12),u=Math.floor(r/16)%4,j=[[19.04,17.92],[14.24,9.52],[10.64,12],[8,0]],Math.sin(t*(1/(z))+Math.sin(t*(1.125)/z)*7*(1-b*2%4>0?1-b*2%4:0))*(40-b*15%30)+40+(b<16?0:Math.random()*(r%4==2?(32-(b*32%32)):0))+(b<32?0:Math.random()*(16-(b*28%28<16?b*28%28:16)))+(b<64?0:Math.sin(t*(a/z)+Math.sin(t*(a)/z)*4*(1-b%1))*32+32)+(b<96?0:Math.sin(t*d/z+Math.sin(t*d/z)*(0+(b*1.5%3)))*v+5)+(b<96?0:Math.sin(t*g/z+Math.sin(t*g/z)*(0+(b*1.5%3)))*v+5)+(b<96?0:Math.sin(t*h/z+Math.sin(t*h/z)*(0+(b*1.5%3)))*v+5)+(b<128?0:t*n[r%32]*8%256>121+Math.abs(108-(b*56%224))?20:0)+(b<129?0:t*n[(r-1)%32]*7.98%256>121+Math.abs(108-(b*56%224))?7:0)+(b<192?0:Math.sin(t*(j[u][w]/z)+Math.sin(t*(j[u][w]*2)/z)*4*(y<2||y>=12&y<14?1-b/2%1:0))*(5.3-y/3%4)+5.3)
11kHz ★
G1=0.75,
A1=0.84,
B1=0.94,
C2=1,
D2=1.12,
E2=1.26,
F2=1.33,
G2=1.5,
A2=1.68,
B2=1.89,
C3=2,
E3=2.52,
RE=0,
tfix=t/4,
b=tfix/2350,
r=Math.floor(b),y=r%16,
//a=bass
a=[C2, C2, RE, C2, RE, C2, RE, G1, C2, C2, RE, C2, RE, C2, RE, D2,][r%16],
//j=arp
j=[C3, G2, E2, C2, C3, G2, E2, C2, C3, G2, E2, C2, C3, G2, E2, C2,
A2, F2, C2, A1, A2, F2, C2, A1, B2, G2, D2, B1, B2, G2, D2, B1],
//je=arp echo
je=[B1, C3, G2, E2, C2, C3, G2, E2, C2, C3, G2, E2, C2, C3, G2, E2, C2,
A2, F2, C2, A1, A2, F2, C2, A1, B2, G2, D2, B1, B2, G2, D2,],
//melody
mel=[RE, RE, E2, RE, F2, G2, G1, C2, RE, RE, D2, C2, RE, RE, RE, RE,
RE, RE, G2, F2, G2, A2, RE, G1, C2, C2, D2, C2, RE, RE, RE, RE,
RE, RE, E2, RE, F2, G2, G1, C2, RE, RE, D2, C2, RE, RE, RE, RE,
RE, RE, G2, G2, A2, G2, A2, RE, C3, G2, C3, RE, RE, RE, RE],
//melody echo
melecho=[RE, RE, RE, E2, RE, F2, G2, G1, C2, RE, RE, D2, C2, RE, RE, RE, RE,
RE, RE, G2, F2, G2, A2, RE, G1, C2, C2, D2, C2, RE, RE, RE, RE,
RE, RE, E2, RE, F2, G2, G1, C2, RE, RE, D2, C2, RE, RE, RE, RE,
RE, RE, G2, G2, A2, G2, A2, RE, C3, G2, C3, RE, RE, RE, RE],
z=27.1,
(b<64?0:Math.sin(tfix*(a/z)+Math.sin(tfix*(a)/z)*4*(2-b%2))*32+32)+
(b<0?0:tfix*j[r%32]*8%172>80+Math.abs(05-(b*24%12))?20:0)+
(b<0?0:tfix*je[r%32]*8%172>80+Math.abs(05-(b*24%12))?10:0)+
(b<32?0:Math.sin(tfix*(1/(z))+Math.sin(tfix*(A1)/z)*7*(1-b*2%4>0?1-b*2%4:0))*(40-b*15%30)+40)+
(b<96?0:Math.random()*(24-(b*28%28)))+
(b<96?0:Math.random()*(r%4==2?(38-(b*32%32)):0))+
(b<128?0:tfix*mel[r%64]*8%172>80+Math.abs(05-(b*84%84))?40:0)+
(b<128?0:tfix*melecho[r%64]*8%172>80+Math.abs(05-(b*84%84))?10:0)
44kHzG1=0.75,A1=0.84,B1=0.94,C2=1,D2=1.12,E2=1.26,F2=1.33,G2=1.5,A2=1.68,B2=1.89,C3=2,E3=2.52,RE=0,tfix=t/4,b=tfix/2350,r=Math.floor(b),y=r%16,a=[C2,C2,RE,C2,RE,C2,RE,G1,C2,C2,RE,C2,RE,C2,RE,D2,][r%16],j=[C3,G2,E2,C2,C3,G2,E2,C2,C3,G2,E2,C2,C3,G2,E2,C2,A2,F2,C2,A1,A2,F2,C2,A1,B2,G2,D2,B1,B2,G2,D2,B1],je=[B1,C3,G2,E2,C2,C3,G2,E2,C2,C3,G2,E2,C2,C3,G2,E2,C2,A2,F2,C2,A1,A2,F2,C2,A1,B2,G2,D2,B1,B2,G2,D2,],mel=[RE,RE,E2,RE,F2,G2,G1,C2,RE,RE,D2,C2,RE,RE,RE,RE,RE,RE,G2,F2,G2,A2,RE,G1,C2,C2,D2,C2,RE,RE,RE,RE,RE,RE,E2,RE,F2,G2,G1,C2,RE,RE,D2,C2,RE,RE,RE,RE,RE,RE,G2,G2,A2,G2,A2,RE,C3,G2,C3,RE,RE,RE,RE],melecho=[RE,RE,RE,E2,RE,F2,G2,G1,C2,RE,RE,D2,C2,RE,RE,RE,RE,RE,RE,G2,F2,G2,A2,RE,G1,C2,C2,D2,C2,RE,RE,RE,RE,RE,RE,E2,RE,F2,G2,G1,C2,RE,RE,D2,C2,RE,RE,RE,RE,RE,RE,G2,G2,A2,G2,A2,RE,C3,G2,C3,RE,RE,RE,RE],z=27.1,(b<64?0:Math.sin(tfix*(a/z)+Math.sin(tfix*(a)/z)*4*(2-b%2))*32+32)+(b<0?0:tfix*j[r%32]*8%172>80+Math.abs(05-(b*24%12))?20:0)+(b<0?0:tfix*je[r%32]*8%172>80+Math.abs(05-(b*24%12))?10:0)+(b<32?0:Math.sin(tfix*(1/(z))+Math.sin(tfix*(A1)/z)*7*(1-b*2%4>0?1-b*2%4:0))*(40-b*15%30)+40)+(b<96?0:Math.random()*(24-(b*28%28)))+(b<96?0:Math.random()*(r%4==2?(38-(b*32%32)):0))+(b<128?0:tfix*mel[r%64]*8%172>80+Math.abs(05-(b*84%84))?40:0)+(b<128?0:tfix*melecho[r%64]*8%172>80+Math.abs(05-(b*84%84))?10:0)
44kHz ★
128+Math.sin(t/24*((t>>10)&42)+1*Math.sin(t/64*(t/1>>15)&21))*24+(Math.sin(t*1/3/4*1+4*Math.sin(t*1/6/4*1))*((t>>11)&1))*16+(Math.sin(t*1/6/4*1+4*Math.sin(t*1/12/4*1))*((t>>10)&1))*16+((3e3/(y=t*4&16383))&1)*56+((3e2/(y=t*32&28600))&1)*56+Math.sin(t/16*((t>>10)&42)+1*Math.sin(t/64*(t/1>>7)&8))*12
11kHz ★
((Math.abs(t*(.02+(t*.0001&0x4)*.01)*(1+((t*.0001)%4)<<5)%0xFF-0x80))&0xFF)+
(t%100)*.3*Math.abs(Math.sin(t*.00005)*.25+.5)+Math.min(Math.max((t>>16)-2,0)*.5,1)*(t*.1&0xF)*(t*.01&0xFF)/0x70
32kHz
t*("36364689"[t>>13&7]&15)/12&128
44kHz(t*("36364689"[t>>13&7]&15)/12&128)+(((t>>12^(t>>12)-2)%11*t/4|t>>13)&127)
44kHz ★
35*(3E3/(y=t&16383)&1)+(x=t*"6689"[t>>16&3]/24&127)*y/4E4+((t>>8^t>>10|t>>14|x)&63)
32kHz
(t>>9^(t>>9)-1^1)%13*t
11kHz
i=t&8191,(((t*((t>>9^((t>>9)-1)^1)%13)&255)/2)+((((t>>3|t<<(t>>12&2))*(i<4096)+(t>>4|t*(t^t+t/256))*(i>4095)))&255)/2)*(2+(t>>16))
★ Noise Maker 11kHz (((t/10|0)^(t/10|0)-1280)%11*t/2&127)+(((t/640|0)^(t/640|0)-2)%13*t/2&127)
11kHz - Technoa=t-2048,((t&t>>6)&(t*(t>>((t&65535)>>12))))+((t*3/4&t>>12)&127)+(t*(a>>7&a>>8&a>>9&16)>>t/64)
32kHz - Crazy Groovy Beatsd=(t*(t&t>>12)*8/11025)|0,((d&16)/8-1)*(d*(d^15)+d)
Signed 44kHz - Crude Sinevawe Dubstep
((t>>1)*(15&0x234568a0>>(t>>8&28))|t>>1>>(t>>11)^t>>12)+(t>>4&t&24)
44kHz
50*sin(t*(t>>11&9)*(t>>15&90)/256)+(40*sin(t/7680))
★ 24kHz
t&t>>8|(t&t>>8|(t^t-t/256)+(4e4/(t&1638))*t)/10000000
★ 44kHz
(t&96)*(4e3/(t&([16383,16383,16383,8191,16383,16383,16383,12287][(t>>15)&7])))+(t&t>>10&63)
48kHz
(t*(t&t>>9)/(t>>18&255)&96)*(4e4/(t&32767))
96kHz
(sin(((2**18)/(t&t>>10)))*32+sin(4e3/(t/4&4095))*64+sin(4e1/(t&4095))*64)
★ Signed 32kHz
(((((t>>16^t>>20)<<2)%8)^t>>12+(t^t-t/255/2))&~t)*4
★ 10kHz
(((t>>9^(t>>9)-1^1)%13*t/2&127)+(3e5/(t&8191)/4%128)+((sin(t|t/1.5)*32+32)*(-t>>4&255)>>8)*[0,1][t>>12&1]+(((t>>10^(t>>10)-1^1)%13*t&63)))/1.4
★ 11kHz
(t*(-t>>7&5)*(t>>8&15)*16&64)+(t>>2&127)
1kHz ★
This includes songs made with new features (br(),sinf().)
(t>>2)*(t>>5)|t>>5
](t>>4)*(t>>3)|t>>2
(t>>4)*(t>>3)|t>>3
(t>>4)*(t>>3)|t>>4
(t>>4)*(t>>3)|t>>(t&4096?3:2)
★ "Explosive beat". Obtained from combining the first two formulas(t>>4)*(t>>2)|t>>(t>>12)%4
- "M-m-multiple explosion beat"(t>>5)*(t>>5)|t>>2
- "Diesel engine"
(t>>2)*(t&16)|t>>2
](t>>2)*(t&(t&32768?16:24)|t>>(t>>8&28))|t>>2
★ "Robocop". Very cool sound with biting blows(t>>3)*(t&(t&32768?16:24)|t>>(t>>8&28))|t>>2
- Lower bass(t>>2)*(t&(t&32768?16:24)|t>>(t>>8&24))|t>>3
- Slower tempo
t>>(t%16?4:6)|t>>(t%128?10:4)
t>>(t%32?4:3)|(t%128?t>>3:t>>3|t>>9)
t*((t>>10|t%16*t>>5)&8*t>>10&18)
- Someone is calling by phonet*((t>>10|t%16*t>>5)&8*t>>12&18)
★ Very funny voice :)t*((t>>10|t%16*t>>8)&8*t>>12&18)
- I hear the long mewing of a cat :)
17*t|(t>>2)+(t&32768?13:14)*t|t>>3|t>>5
★ Nya!
t>>9&2*t&10*t|t>>5&6*t
★ Cool happy tune
129*t%(t>>7)
- RIP headphone users!
t^t%1001+t^t%1002
- Experimenting with resonance
2*(-t%128|t%130)
- Experimenting with resonance, a pretty hypnotic result
t<<2^t>>4^t<<4&t>>8|t<<1&-t>>4
15-t%(t&16384?26:29)&t>>4|t<<1&-t>>4
t%((t&-16|t>>10)&42)<<2|t>>4
t%((t&-16|t>>11)&42)<<2|t>>4
- Allahu akbar!
t*(3+(1^5&t>>10))*(5+(3&t>>14))>>(3&t>>8)
t*(2-(1&-t>>11))*(5+(3&t>>14))>>(3&t>>8)
- Let replace (3+(1^5&t>>10)) with (2-(1&-t>>11))t*(2-(1&-t>>11))*(5+(3&t>>14))>>(3&t>>8)|t>>2
- And just add |t>>2... The tune became cleanert*(2-(1&-t>>11))*(5+(2&t>>14))>>(3&t>>8)|t>>2
- Replacing 3&t>>14 with 2&t>>14 changes the period and the second tonet*(2-(1&-t>>11))*(5+(2&t>>14))>>(3&t>>8)|t>>3
★ "Boss level". Slow down |t>>2 rhythm to |t>>3... Sounds dangerous!t*(t&16384?6:5)*(1+(1&t>>12))>>(3&t>>8)|t>>3
- By playing with the "Boss level" I made a different percussiont*(t&16384?6:5)*(1+(1&t>>12))>>(3&t>>8)|t>>4
- "Boss level #2". |t>>4 rhythm sounds cool!t*(t&16384?6:5)*(3+(1&t>>8))>>(3&t>>8)|t>>4
- Replacing (1+(1&t>>12)) with 3+(1&t>>8) adds an awesome harmonicst*(t&16384?6:5)*(4-(1&t>>8))>>(3&t>>8)|t>>4
- Coefficients 4-/3-/2+/3+ can slightly change themt*(t&16384?6:5)*(4-(1&t>>8))>>(3&t>>8)|t>>(t&4096?3:4)
- We can use a ternary operation for more complicated beatt*(t&16384?6:5)*(3-(1&t>>8))>>(3&t>>9)|t>>4
★ "Aliens on approach". Slow down the explosions to 3&t>>9, get a heavy chiptune beatt*(t&16384?6:5)*(3+(1&t>>8))>>(3&t>>9)|t>>5
★ "Aliens are close". t>>5 rhythmt*(t&16384?6:5)*(4-(1&t>>8))>>(3&t>>9)|t>>6
★ "Aliens are here". t>>6 rhythm - SUPER POWERFUL ECHOESt*(t&16384?6:5)*(4-(1&t>>8))>>(3&-t>>9)|t>>6
- Inverted explosions give us mysterious soundst*(t&16384?6:5)*(4-(1&t>>8))>>(3&t>>9)|(t|t*3)>>5
★ "Aliens attack". More complicated (t|t*3)>>5 rhythm with explosion drums. Cool!t*(t&16384?6:5)*(4-(1&t>>8))>>(3&t>>9)|t>>(t&4096?3:4)
★ "Aliens encounter". Replacing the rhythm with a ternary gives an EXTRA HARD BEAT!t*(t&16384?6:5)*(3+(3&t>>7))>>(3&t>>9)|t>>(t&4096?3:4)
- Funny inverted sounds :Dt*(t&16384?6:5)*(4-(1&t>>8))>>(3&-t>>15)|t>>(t&4096?3:4)
★ "Prepare to fight". Long period formula with increasing from low to high sound2*t*(t&16384?6:5)*(4-(3&t>>8))>>(3&-t>>15)|t>>(t&4096?3:4)
★ "Prepare to fight #2". Previous formula with doubled freqency basst*(t&16384?6:5)*(4-(1&t>>8))>>(3&t>>(t&4096?2:9))|t>>(t&4096?3:4)
★ "Aliens encounter + drums". Impressive sound!2*t*(t&16384?6:5)*(4-(3&t>>8))>>(3&-t>>(t&4096?2:15))|t>>(t&4096?3:4)
★ "Prepare to fight #2 + drums"2*t*(t&16384?6:5)*(4-(3&t>>8))>>(3&-t>>(t&4096?2:15))|t>>(t&8192?t&4096?4:5:3)
★ "Ready to fight?". Cool for a fighting game :)t*(t&16384?7:5)*(5-(3&t>>8))>>(3&-t>>(t&4096?2:16))|t>>(t&16384?t&4096?3:4:3)
★ "Aliens won / Hard level". Playing with coefficients. stephanShi's favorite!t*(t&16384?6:5)*(1+(3&t>>10))>>(3&t>>8)|t>>2
- "Boss level #2" variation with (1+(3&t>>10)) expression and t>>2 rhythmt*(t&16384?6:5)*(1+(3&t>>(t&2048?4:10)))>>(3&t>>8)|t>>2
★ "Another level". Adding a noise beat by using ternary opertiont*(t&16384?6:5)*(2+(3&t>>(t&2048?4:9)))>>(3&t>>8)|t>>2
- "Happy level". Previous formula with slightly changed coefficitntst*(t&16384?6:5)*(2+(3&t>>9))>>(3&-t>>8)|t>>4
- "Happy level #2". Inverted 3&-t>>8 gives a more happy tune :)t*(t&16384?6:5)*(2+(3&-t>>9))>>(3&t>>8)|t>>4
★ "Happy level #3". We can get an awesome harmonics with 3&-t>>9t*(t&16384?6:5)*(2+(3&t>>11))>>(3&-t>>8)|t>>4
- "Happy level #2 + t>>11"t*(t&16384?6:5)*(3+(3&t>>(t&2048?7:14)))>>(3&t>>9)|t>>2
★ "Awesome level". We can get a cool cartoon-game melody!t*(t&16384?7:5)*(3+(3&t>>14))>>(3&t>>9)|t>>6
★ "Alien dungeon". So sinister.. t>>6 gives a fading effectt*(t&16384?7:5)*(3+(3&t>>14))>>(3&t>>9)|(t|t*3)>>5
- "Alien dungeon" with a complicated rhytm (t|t*3)>>5t*(t&16384?7:5)*(4-(3&t>>14))>>(3&t>>9)|(t|t*3)>>5
- Previous with a slightly different tunet*(6+(1&t>>14))>>(3&t>>8)|t>>(t&4096?3:4)
t*(6+(1&t>>14))>>(3&t>>8)|2*t>>(t&4096?3:4)
★ Previous tune with doubled drumst*(16+(1&t>>14))>>(3&t>>8)|t>>4
t*((t&4096?6:16)+(1&t>>14))>>(3&t>>8)|t>>(t&4096?3:4)
★ Previous tune with a ternary magic
a=(30*t*Math.pow(2,"B*918/916-918/91B*918/916-918/91>*;2:1;26/;2:1;2>*;2:1;26/;2:1;2A*;291;28/;291;2A*;291;28/;291;2B*=-;,=-91=-;,=-B*=-;,=-91=-;,=-E*>6=4>692>6=4>6E*>6=4>692>6=4>6D*<3:1<380<3:1<3D*<3:1<380<3:1<3D(=4<3=481=4<3=4D(=4<3=481=4<3=4B(:18/:16.:18/:1B(:18/:16.:18/:1B&;2:1;26/;2:1;2B&;2:1;26/;2:1;2@&;,9*;,8/;,9*;,@&;,9*;,8/;,9*;,@%=-;,=-91=-;,=-@%=-;,=-91=-;,=->*=-;,=-92=-;,=->*=-;,=-92=-;,=->,8/6-8/428/6-8/>,8/6-8/428/6-8/=-412/4192412141=-412/4192412141;-6341613/634163;-6341613/634163;,8/6-8/528/6-8/;,8/6-8/528/6".charCodeAt(t>>10)/12-7))%256,
a>([(Math.abs(((t>>8)%256)-128))+64])?Math.random()*16:~(Math.random()*16)
a=(15*t*Math.pow(2,"B*918/916-918/91B*918/916-918/91>*;2:1;26/;2:1;2>*;2:1;26/;2:1;2A*;291;28/;291;2A*;291;28/;291;2B*=-;,=-91=-;,=-B*=-;,=-91=-;,=-E*>6=4>692>6=4>6E*>6=4>692>6=4>6D*<3:1<380<3:1<3D*<3:1<380<3:1<3D(=4<3=481=4<3=4D(=4<3=481=4<3=4B(:18/:16.:18/:1B(:18/:16.:18/:1B&;2:1;26/;2:1;2B&;2:1;26/;2:1;2@&;,9*;,8/;,9*;,@&;,9*;,8/;,9*;,@%=-;,=-91=-;,=-@%=-;,=-91=-;,=->*=-;,=-92=-;,=->*=-;,=-92=-;,=->,8/6-8/428/6-8/>,8/6-8/428/6-8/=-412/4192412141=-412/4192412141;-6341613/634163;-6341613/634163;,8/6-8/528/6-8/;,8/6-8/528/6".charCodeAt(t>>11)/12-7))%256,
a>([(Math.abs(((t>>9)%256)-128))+64])?Math.random()*16:~(Math.random()*16)
a=(30*t*Math.pow(2,"B*918/916-918/91B*918/916-918/91>*;2:1;26/;2:1;2>*;2:1;26/;2:1;2A*;291;28/;291;2A*;291;28/;291;2B*=-;,=-91=-;,=-B*=-;,=-91=-;,=-E*>6=4>692>6=4>6E*>6=4>692>6=4>6D*<3:1<380<3:1<3D*<3:1<380<3:1<3D(=4<3=481=4<3=4D(=4<3=481=4<3=4B(:18/:16.:18/:1B(:18/:16.:18/:1B&;2:1;26/;2:1;2B&;2:1;26/;2:1;2@&;,9*;,8/;,9*;,@&;,9*;,8/;,9*;,@%=-;,=-91=-;,=-@%=-;,=-91=-;,=->*=-;,=-92=-;,=->*=-;,=-92=-;,=->,8/6-8/428/6-8/>,8/6-8/428/6-8/=-412/4192412141=-412/4192412141;-6341613/634163;-6341613/634163;,8/6-8/528/6-8/;,8/6-8/528/6".charCodeAt((t>>10)%509)/12-7))%256,
a>([(Math.abs(((t>>8)%256)-128))+64])?Math.random()*16:~(Math.random()*16)
f = function(q){return a=30*t*Math.pow(2,"B*918/916-918/91B*918/916-918/91>*;2:1;26/;2:1;2>*;2:1;26/;2:1;2A*;291;28/;291;2A*;291;28/;291;2B*=-;,=-91=-;,=-B*=-;,=-91=-;,=-E*>6=4>692>6=4>6E*>6=4>692>6=4>6D*<3:1<380<3:1<3D*<3:1<380<3:1<3D(=4<3=481=4<3=4D(=4<3=481=4<3=4B(:18/:16.:18/:1B(:18/:16.:18/:1B&;2:1;26/;2:1;2B&;2:1;26/;2:1;2@&;,9*;,8/;,9*;,@&;,9*;,8/;,9*;,@%=-;,=-91=-;,=-@%=-;,=-91=-;,=->*=-;,=-92=-;,=->*=-;,=-92=-;,=->,8/6-8/428/6-8/>,8/6-8/428/6-8/=-412/4192412141=-412/4192412141;-6341613/634163;-6341613/634163;,8/6-8/528/6-8/;,8/6-8/528/6".charCodeAt((t>>10)-q)/12-7)%256,(a>[Math.abs((t>>8)%256-128)+64]?(16*Math.random())-128:((16*Math.random())+112))+128},
(f(0)/2)+(f(1)/4)+(f(2)/8)+(f(3)/16)
f = function(q){return a=30*t*Math.pow(2,"B*918/916-918/91B*918/916-918/91>*;2:1;26/;2:1;2>*;2:1;26/;2:1;2A*;291;28/;291;2A*;291;28/;291;2B*=-;,=-91=-;,=-B*=-;,=-91=-;,=-E*>6=4>692>6=4>6E*>6=4>692>6=4>6D*<3:1<380<3:1<3D*<3:1<380<3:1<3D(=4<3=481=4<3=4D(=4<3=481=4<3=4B(:18/:16.:18/:1B(:18/:16.:18/:1B&;2:1;26/;2:1;2B&;2:1;26/;2:1;2@&;,9*;,8/;,9*;,@&;,9*;,8/;,9*;,@%=-;,=-91=-;,=-@%=-;,=-91=-;,=->*=-;,=-92=-;,=->*=-;,=-92=-;,=->,8/6-8/428/6-8/>,8/6-8/428/6-8/=-412/4192412141=-412/4192412141;-6341613/634163;-6341613/634163;,8/6-8/528/6-8/;,8/6-8/528/6".charCodeAt(((t>>10)-q)%510)/12-7)%256,(a>[Math.abs((t>>8)%256-128)+64]?(16*Math.random())-128:((16*Math.random())+112))+128},
(f(0)/2)+(f(1)/4)+(f(2)/8)+(f(3)/16)
a=0,tri=(((t<<a)^-(t>>(a-8)&1))%256),(t*(t*287/256&t>>11))
t>>t%(t%2?[61,51,31,41][(t>>14)%4]:34)+(t>>6)|Math.cos((t>>1)/314.159)*128+128
((t*(t&[16384,8192,12288][(t>>16)%3]?7:5)*(3+(3&t>>14))>>(3&t>>9)|t>>6)
>>[2,2,1,3,5,0,1,3,2,1,2][(t>>16)%11])<<2
t>>t%(t%2?t&32768?41:t&16384?51:61:34)&(t/9&t/7|t/5&t/3|t|t*3&t*5|t*7&t*9)>>4
t&16384?t*(t&16384?7:5)*(3+(3&t>>14))>>(3&t>>9)|t>>(t&32768?3:2):(-t&8192?t*(t&16384?7:5)*
(3+(3&t>>14))>>(3&t>>9)|t>>(t&32768?6:7):t*(t&16384?7:5)*(3+(3&t>>14))>>(3&t>>9)|
(t|t*(t&32768?2:3))>>6)
wv=function(t){return y=t%256,y<127?y:2*(256-y)},ms=int(t/1e4),p=t/1e4%16,b=p%4,qn=p%1,
rh=function(t){for(m=0,i=0;i<t.length;i++)b>t[i]&&(m=b-t[i]);return m},
sc=ms%256<32?1:min(1,max(0,3*qn-.3))*(ms%32>0),
c=t*(p<12?2:2.4),
// VVVV Music code VVVV
max(0,min(255,sc*(wv((t/32)-(
((t/2+qn*(t*(ms>>2&15))+(2*t*(1+(ms>>5&3)))))&64)*1.5)*(1-rh([0,1,1.5,2,2.75,3.5]))*(ms%256>63)-
(t/2+(3*pow(7-qn*(2+(ms>>2&3))%1,5))&128)*(ms%64>47)+(((
(wv(c)-128)*2)+128)))-qn*pow(1-qn*(ms%128<80?2:4)%1,4)*80*random()*(ms%256>63)+wv(2*t+60*sin(25*b))*(ms%256>31)*(ms%32<1)+wv(2e3*pow(1-qn,9))*(ms%256>31)+128))/*,min(wv(t*2)*2,255)*/
22kHz
y=(t==0?0:y),a=1,b=8,x=t&t>>8,y=((y*b)+((x&255)*a))/(a+b)
t*(t&t>>12)|t>>(t&65536?t&32768?(t&16384?t&8192?t&4096?4:5:3:t&8192?t&4096?4:3:5):6:(t&4096?t:t&8192?t*.01:t&2048?2:1))
max(0,(t%256)-abs(((t>>8)%512)-256))>0?255:0
32kHz
(((1-(t/(t&t^t>>6)))*64)+(1+(1/64)))*127.5
(((((((((1-(t/(t&t^t>>8)))*64)+(1+(1/64)))*128)%256)-128)*3.7)+128)^(((t&t>>8)/(t>>8))*255))
t=t/(t%256),((t^t+(t>>8))^(t^t+(t>>7))^(t^t+(t>>6))^(t^t+(t>>5))^(t^t+(t>>4))^(t^t+(t>>3))^(t^t+(t>>2))+(t^t+(t>>1))^(t^t+t))
(t/4&0xbeef) >> t / ((t>>14&3) +8 )
32kHz
a=((t&t+(t>>8))&128)+((t&t+(t>>7))&64)+((t&t+(t>>6))&32)+((t&t+(t>>5))&16)+((t&t+(t>>4))&8)+((t&t+(t>>3))&4)+((t&t+(t>>2))&2)+((t&t+(t>>1))&1),(a^(a+(a>>(7-(t>>16)))))
((t/4&244)>>t/((t>>14&3)+4))^(t/8>>(t>>9)*t/((t>>14&3)+4))^((.25*t&255)*(t>>8&255)>>8)
tan((5*t&t>>7|3*t&4*t>>10)/(256*22.5))*5760
t*(2-(3^5&t>>11))*(5.5+(3&t>>15))>>(3&t>>8)|t>>7
(t>>4)*(t>>4)|(t<<14)>>(t>>15)+((t>>12)%8)
128kHz
sin((t*(t&t>>6)*31.41592)/100000000)*128+128
t&16384?(t*(t/(t&(t>>((t>>3)&t>>(t&t>>12))))))|t>>4:(((t*(t/(3+(t/(1<<13)))))%256)+(t&t>>8)%256)/2|t>>4
tt=t/32,a=2,b=tt*((int((sin(tt)+1)*a))/a),(t*((b&0b11000000)/64))+((t&64|t>>5)^(t&33|t>>9)>>(t>>6&t<<2))
(((((t^(t*1.1&t>>8))+t)^t)-t)^t)&((t*1.5)&(t*1/1.5)>>8)
a=((-t&4095)*(255&t*(t&t>>13))>>12)+(127&t*(234&t>>8&t>>3)>>(3&t>>14)),
((t>>2)%256)>(((int(a)%256)+256)%256)?192:64
a=12,b=(((t**a)*(t>>6&127))/(t**a))^(t>>6&127),(b>128?8:b>64?7:b>32?6:b>16?5:b>8?4:b>4?3:b>2?2:b>1?1:0)*32
a=((t>>4)%64),b=(((t**a)*(t>>6&127))/(t**a))^(t>>6&127),(b>128?8:b>64?7:b>32?6:b>16?5:b>8?4:b>4?3:b>2?2:b>1?1:0)*32
t*=(65536/64000),(((((((t/(4E4>t?(2E4>t?t%(t>>9)*10|t/2&t:t*(t>>9)*10&t/2)|t%(t>>9)*3&t/16:t*(t>>9)^t))*(t>>4))-33)%256)+256)%256)+2)*8192
64kHz
wave = (a) => (a%50.01+a%40.1+a%30.1+a%60.01),wave(t&(pow(2,(t/(1<<12)))-1))
a=(t>>2),b = (c,d,e) => ((e&c)?d:0),br = (u) => b(128,1,u)+b(64,2,u)+b(32,4,u)+b(16,8,u)+b(8,16,u)+b(4,32,u)+b(2,64,u)+b(1,128,u),
br(a)
br(br(t)^br(t)+(br(t>>8)))
(t/(t&t>>10))*256
(t>>7)*((((((((((t&t/256)&t/255)&t/254)&t/253)&t/252)&t/251)&t/250)|(t>>4))^(t>>10))&240)
24kHz
((t>>2)*(((((((t&t/256)|t/257)&t/258)|t/259)&t/260)|t/261)&t/262))/(t>>8)^(t>>2)
20kHz
((t>>2)*(((((((((((((((((t&t/256)|t/257)&t/258)|t/259)&t/260)|t/261)&t/262)|t/263)&t/264)|t/265)&t/266)|t/267)&t/268)|t/269)&t/270)|t/271)&t/272))/(t>>8)^(t>>7)^(t>>6)^(t>>5)^(t>>4)^(t>>3)^(t>>2)^(t>>1)^t
64kHz
(((t*(t>>8|t>>4)&255)*(((-t>>3)&255)/256))/(((t>>(16-(t>>16)))%(1*(1<<(t>>16))))+1))
e=(t>>1^t),(((t|t>>4)^e)+(t>>12))^e
(t*((t>>18)+(1+(((t>>10)>>((t>>5)&7))&1))))
(((t>>(t%16?4:6)|t>>(t%128?10:4))|(t>>(t%32?4:3)&(t%128?t>>3:t>>3|t>>9))>>((t&t>>8)^(t&t>>10)))-(t>>17&1?(t>>4&128)?0:128:0))^(t&t>>10)
(t^t+(t>>8))^(t^t+(t>>8))+((t^t+(t>>8))>>8)
t/(((t&t>>11)^(t&t>>15)))*256|tan(4e3/(t&16383))